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The rapidly growing literature on teamwork and collaborative problem solving
suggests that these skills are becoming increasingly important in today’s education
and workforce. This special issue of Journal of Educational Measurement seeks to
channel the contributors’ expertise toward advances in the measurement and assess-
ment of cognitive and noncognitive skills of individuals and teams in education. The
articles in this special issue discuss the challenges and opportunities for developing
collaborative assessments that cover the assessment of collaborative skills, of collab-
orative problem solving skills, and/or the assessment of cognitive skills through col-
laborative problem solving tasks. These articles combine collaborative assessment
methods with advanced psychometrics techniques, such as computational psycho-
metrics, for analyzing collaborative behavior in educational assessments; they intro-
duce the recent progress on innovative ways of studying collaboration in education.

Recent developments indicate that society is interested in redesigning educa-
tional assessments and not merely improving the assessments we have. Educators
request assessments that reflect the way people actually teach, learn, and work.
There is a renewed interest in performance assessments and efforts are being made
to develop these complex assessments in virtual settings. One type of performance
task is the collaborative task, where an individual works together with one or
more agents to solve a problem. This ubiquitous interactive setting of our every-
day life poses challenges for assessment. Questions about which skills are needed
in such a context, how to disentangle the individual contributions from the team
contribution, and what types of models could help us predict a successful per-
formance have tempered the enthusiasm around pursuing the development of ed-
ucational assessments with collaborative components. Nevertheless, other recent
events indicate that progress is being made. For example, the Programme for In-
ternational Student Assessment (PISA) 2015 administered a test of collaborative
skills (OECD, 2013); the National Assessment of Educational Progress (NAEP)
hosted a symposium on collaborative problem solving (CPS) in September, 2014,
and as a follow-up, the National Council on Measurement in Education (NCES)
commissioned a white paper on the considerations for introduction of the CPS in
NAEP; the College Board’s Advanced Placement Computer Science Assessment is
being redesigned and one of the new features is introducing collaborative tasks;
Educational Testing Service (ETS) and the Army Research Institute co-hosted a
working meeting, Innovative Assessment of Collaboration, November 3–4, 2014,
and an edited interdisciplinary volume based on that meeting is being published
with Springer Verlag (von Davier, Zhu, & Kyllonen, 2017); the Smarter Balance
Consortium developed an assessment system where performance tasks, including
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collaborative tasks, are considered for being administered to students as a preparatory
experience and then are followed with individual assessment (see Davey et al., 2015,
Chapter 4).

In this introductory article I focus on three measurement-related aspects of the
process of building collaborative assessments. First, I briefly discuss the data types
collected from the collaborative assessments and the dependencies in the data that
force psychometricians to rethink the approach to measurement of these complex
constructs. This will lead directly to my second point in this article: the introduc-
tion of a recent discipline, computational psychometrics, as a blend of stochastic
processes theory, computer science–based methods, and theory-based psychometric
approaches that may aid the analyses of complex data from performance assess-
ments, including collaborative assessments. This discipline organically developed
around the complex next-generation learning and assessment systems that include
performance tasks, such as collaboration, games, and simulations. Third, I briefly
describe a statistical model for collaborative activities. In this introduction I will not
discuss the constructs of collaboration or collaborative problem solving per se, nor
the infrastructure challenges for administering collaborative tasks and for the col-
lection of rich data, nor the validity of these assessments. Each of the subsequent
articles will address these issues in the context of their applications. This introduc-
tory article will conclude with an overview of the rest of the articles in this special
issue.

Clearly, developing collaborative assessments is challenging and requires an in-
terdisciplinary approach. This collection of articles illustrates these challenges in
various applications, including the study of measurement invariance in collaborative
tasks.

Data, Log Files, and Data Dependencies

Collaborative tasks are interactive. This means that test takers talk, negotiate, hy-
pothesize, revise, and respond, orally, with gestures, and online with chats and emoti-
cons, acronyms, and so on. All of these data are process data that offer an insight into
the interactional dynamics of the team members; they are relevant for defining col-
laborative tasks and for evaluating the results of the collaboration (see also Agard &
von Davier, in press). Traditionally, these data were not available to researchers at a
scale that would allow for meaningful inferences. With the advances in technology,
these complex data can be captured in computerized or in virtual settings.

The data from collaborative tasks consist of time-stamped sequences of events
registered in a log file. From a statistical perspective, these activity logs or log files
are detailed time series describing the actions and interactions of the users. (See also
Hao, Smith, Mislevy, von Davier, and Bauer [2016] for a discussion and description
of the log files for the collaborative assessments). In addition to the process data,
if the collaboration is set up in a cognitive (say, science) task it will also result in
outcome data. These types of data are more similar to the outcome data from the tra-
ditional tests and indicate if a particular question was answered correctly and whether
the problem was solved (or to what degree it was solved).
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Figure 1. Computational psychometrics. A model for performance and collaborative
assessments.

Another feature of the data from collaborative tasks is that they can be at different
units of measurement: they can be characterized as individual and team data both as
outcome data and process data. In order to save space, these types of data and their
role in assessment are discussed further in the online Supporting Information.

Computational Psychometrics

As mentioned above, computational psychometrics is defined as a blend of data-
driven computer science methods (machine learning and data mining, in particular),
stochastic theory, and theory-driven psychometrics in order to measure latent abilities
in real time (von Davier, 2015).

This blend can be instantiated as iterative and adaptive hierarchical inference
data algorithms embedded in a theoretical psychometric framework as shown in
Figure 1. This visual representation of the model is adapted from a figure from Khan
(2015) on the multimodal hierarchical approach. This hierarchical approach to mul-
timodal data has been discussed in Khan, Cheng, and Kumar (2013).

The idea illustrated in Figure 1 is that the approach to test development and data
analysis is rooted in theory and starts with the implementation of evidence centered
design (ECD; Mislevy, Steinberg, Almond, & Lukas, 2006) principles; then the test
is piloted and the multimodal metadata (fine grain data points) are collected along
with the data from traditional items. This approach is also known as a top-down ap-
proach because it relies on input and theories devised by human experts. The next
step involves a bottom-up approach, in which the data are analyzed with unsuper-
vised and supervised algorithms from data mining and machine learning. If new rel-
evant patterns are identified (for example, performance patterns, behavior patterns),
these will be considered for incorporation in the revised psychometric models. The
data mining (DM) and machine learning (ML) approaches applied to metadata will
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result in midlevel representations of the constructs that can be further incorporated
in the original psychometric models along with the data from the traditional items.

Next, the psychometric models are updated and the process is repeated with a sec-
ond large-sample pilot data. At this stage, one may consider models for stochastic
processes if the data allow. Once the psychometric model is stable, only then is the
assessment administered to the population of interest. On the operational data, only
supervised machine learning algorithms and already defined and validated psycho-
metric models are further used in order to achieve a stable measurement and classi-
fication rules. The steps and cycles depicted in Figure 1 are discussed next in more
detail.

How to Instantiate the Computational Psychometrics (CP) Model From
Figure 1?

The use of ECD in the CP context. This part is the easiest to understand for
psychometricians. This framework involves designing the system (learning and/or
assessment) based on theory, identifying constructs associated with competency of
interest (evidence), and finding evidence for these constructs from low-level multiple
sensory data (evidence about evidence; Khan, 2015). At this stage, one defines the
constructs to be measured and develops the tasks that are collaborative so that they
provide the “right” data to support the intended claims and choice of psychometric
models. We may also consider embedding the CPS tasks into traditional assessments
to increase the measurement accuracy for the cognitive construct and to enhance the
data around the CPS task (Liu, Hao, von Davier, Kyllonen, & Zapata-Rivera, 2015).

The psychometric models for the CP context. The types of models associated
with complex data with dependencies have been item response theory (IRT)-like
models and Bayesian belief networks (BBNs; Levy, 2014: Mislevy et al., 2014).
BBNs model the probability that a student has mastered a specific knowledge com-
ponent conditional on the sequence of responses given to previous elements of a task,
and eventually to other tasks, whether they are associated with that knowledge com-
ponent or not (as long as they are part of the network and share at least an indirect
connection). BBNs have long been applied in simulations and games to represent
student knowledge and thereby guide the activities of the tutoring system (Corbett &
Anderson, 1995; Desmarais & Baker, 2012; VanLehn, 2008). BBNs have also played
a central role in the design of complex assessments (Shute, Hansen, & Almond,
2008); therefore, BBNs are an obvious methodological bridge between measuring
CPS skills and traditional psychometric theory. However, the practical implementa-
tion of BBNs often requires highly simplifying assumptions, and, as with traditional
models, they have not been adapted to represent the knowledge of multiple individ-
uals simultaneously.

Fortunately, there are other models such as stochastic point processes that have
been used extensively in economics that can aid the modeling of interdependen-
cies based on the temporal structure of the collaborative interactions (von Davier
& Halpin, 2013), hidden Markov models (see Soller & Stevens, 2008), and mod-
els rooted in the cognitive or social theories such as agent-based modeling, ACT-R
(Bergner, Andrews, Zhu, & Kitchen, 2015) and Markov decision processes, which
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is a cognitive model with separable components (goals/motivation, beliefs about the
world, ability to optimize behavior) and which defines behavior as an optimization
of expected rewards based on current beliefs about the world (LaMar, 2014).

The application of DM and ML tools in the CP context. DM does not have a
long history in education or psychology because, until recently, educational and psy-
chological data were not often of high enough dimensionality to require such tech-
niques. The purpose of data mining techniques is to reduce the dimensionality of
the data set by extracting interpretable patterns to allow research questions to be
addressed that would not otherwise be feasible (Romero, Gonzalez, Ventura, del Je-
sus, & Herrera, 2009). Different clusters (patterns of responses) may be assigned
different scores. The tools known as visualization, clustering, classification, feature
extraction, sequence clustering, and editing distance methods for scoring are exam-
ples of DM tools that may be applied. There are already promising results regarding
the identification of new evidence to feedback into ECD/test development cycle and
generation of testable hypotheses (see Kerr, 2015; Kerr & Chung, 2012; Zhang, Hao,
Li, & Deane, 2015).

Machine learning algorithms may be used for in vivo adaptive “learning” and as-
sessment, by using the results/features from a DM classifier (often in conjunction
with a psychometric model in a Bayesian framework) that “learns” from the data to
predict the success on a task. ML algorithms rely on the availability of large and rep-
resentative training data sets. These algorithms have been used in education for the
development of automated scoring of essays; now we are using similar algorithms
for the automatic scoring of speech and chat in collaborative interactions and for
the automated detection of affective states during the collaboration (see Khan, 2015;
von Davier, van der Schaar, & Baraniuk, 2016; Wang, Hao, Liu, Chen & von Davier,
2015).

In specific practical applications, this hierarchical iterative framework may be im-
plemented in simplified or less explicit forms; for example, some of the steps may be
there but may not be explicitly described and some of the steps may not be needed.

A Statistical Model for Collaboration

One of the innovations in the measurement of collaborative problem skills was
presented in von Davier and Halpin (2013). They modeled collaboration as statisti-
cal dependence among the activities of two or more individuals. They proposed to
measure the degree of interdependence demonstrated by the activities of the indi-
viduals in a team by using the Kullback-Leibler divergence (KL) of the marginal
distributions (of the event sequences of the actions of each individual) from the joint
distribution (of the team). The interpretation of KL in the context of collaboration is
intuitive. If KL = 0 then this is an independent team, in which the members are work-
ing independently, like a gymnastics team, for example (see von Davier & Halpin,
2013, for a discussion of different types of teams based on the degree of depen-
dence). When KL is positive some interdependence is exhibited among the activities
of the individuals, with larger values indicating more interdependence (i.e., a greater
divergence from the model of independence).
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Von Davier and Halpin (2013) defined an outcome as a function of the complete
time series, or sequences of actions (of the process data from each team member).
If the activities recorded are correct responses to the components of a CPS task, we
could define the group’s total score on the task as the sum of the outcomes from all
team members to all task components and compute its expected value accounting for
the degree of interdependence. For example, for an independent team, the expected
outcome is simply the sum of its parts. A productive collaboration can then be de-
fined as one for which the expected outcome is greater than the sum of its parts, and
an unproductive collaboration would have an expected performance worse than that
of the independence model. A similar approach can be applied to other collaborative
outcomes. Instead of sum scores, it will be generally advantageous to have a psycho-
metric model for the entire response pattern, for instance, a (modified) IRT model or
a Bayesian network.

Hence, in modeling the processes of collaboration, we are concerned about de-
scribing the statistical dependence exhibited by the activities of groups of individu-
als. In modeling the outcomes of collaboration, we are concerned with judging the
performance of a group relative to what we would expect from the individual group
members had they not collaborated. In CPS we are concerned with how the prob-
ability of an individual’s activities changes over continuous time as a function of
previous activities. These aspects of CPS are discussed in this special issue.

The Structure of the Special Issue

The articles included in this issue focus on different parts of developing educa-
tional assessments of collaboration: they discuss the framework for the skills to be
measured, the psychometric properties of the test, the data collection design, and the
measurement models. The first two articles focus more on the task and test design,
while the rest of the articles focus on methodological aspects of the CPS assessments.
In some of these articles the computational psychometric model is more obvious than
in others.

Scoular, Care, and Hesse’s article “Designs for Operationalizing Collaborative
Problem Solving for Automated Assessment” outlines general design principles of
collaborative problem solving curriculum-embedded assessments; it examines the
degree to which assessments of collaborative problem solving skills have the ca-
pacity to discriminate between the contributing subskills. This has implications for
current theoretical frameworks for collaborative problem and for the teaching of the
skills.

Rosen’s article “Assessing Students in Human-to-Agent Settings to Inform Col-
laborative Problem-Solving Learning” explores challenges in the development and
validation of such assessments. The design principles and validation processes are
applied to an empirical data set based on the Animalia collaborative science problem
solving international project from Pearson.

Andrews, Kerr, Mislevy, von Davier, Hao, and Liu’s article “Modeling Collabo-
rative Interaction Patterns in a Simulation-Based Task” describes the use of process
data and performance outcomes in the tetralogue (a simulation-based collaborative
science task at ETS) to examine gender and cultural differences in collaboration.
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Analyses using an Andersen/Rasch multivariate model explore the propensities of
particular dyads to interact in accordance with certain patterns of interaction.

Halpin, von Davier, Hao, and Liu’s article, “Measuring Student Engagement Dur-
ing Collaboration” elaborates the use of point processes and related methods for
modeling interdependence in multivariate time series data. Point processes model
the dependence in timing among collaborators’ actions. This provides an intuitive
measure of engagement among collaborators and is used in this article to develop
“collaboration indices.” The approach was illustrated with the same data from the
tetralogue as in Andrews et al.

In Wilson, Gochyyev, and Scalise article, “Modeling Data From Collaborative As-
sessments: Learning in Digital Interactive Social Networks” the focus is on the as-
sessment of cognitive skills through collaborative tasks, using initial field-test results
from the Assessment and Teaching of 21st Century Skills (ATC21S) project. Specifi-
cally, the project’s “ICT literacy—Learning in digital networks” is investigated here.
The article includes a description of the development of the learning progression.
Modeling of results employs unidimensional and multidimensional item response
models, with and without random effects for groups.

The article of Herborn, Mustafić, and Greiff, “Mapping an Experiment-Based As-
sessment of Collaborative Behavior Onto Collaborative Problem Solving in PISA
2015: A Cluster Analysis Approach for Collaborator Profiles,” conceptually embeds
a computer-based human-agent collaborative behavior assessment (COLBAS) into
the PISA 2015 CPS approach. In this article a model-based cluster analysis is pre-
sented; the model was employed to identify profiles of collaborators.

Olsen, Aleven, and Rummel’s article, “Statistically Modeling Individual Students’
Learning Over Successive Collaborative Practice Opportunities,” presents an exten-
sion of the additive factors model (AFM) used in the educational data mining com-
munity; this is a standard logistic regression model for modeling individual learning,
often used in conjunction with knowledge component models and tutor log data. The
extended model predicts performance of students solving problems collaboratively
with an intelligent tutoring system.

In conclusion, although there is agreement that collaboration is an important set
of skills (Griffin & Care, 2015), there is less agreement on how to build an accurate
assessment at scale to measure those skills. This special issue is a first attempt to
describe several pioneering measurement approaches and applications in educational
measurement.
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